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ABSTRACT
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channel of variable cross section. The approach used here is based upon a
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SIGNIFICANCE AND EXPLANATION
An equation of the K-dv type is derived for the study of nonlinear
surface waves under gravity with surface tension and edge constraints in a
channel of variable cross section. The approach used here is based upon a
nonlinear ray method. An example of a symmetric rectangular channel with

variable width is given.
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NONLINEAR CAPILIARY WAVES UNDER GRAVITY
WITH EDGE CONSTRAINTS IN A CHANNEL

M. C. Shen*
§1. INTRODUCTION

The dynamical problem of capillary waves on a liquid in a channel has not been much
studied in the past. The difficulty may lie in the fact that the edge condition at the
line of contact of the liquid free surface with ths channel wall so far remains an open
problem. It is well known that for water at rest the contact angle at the edge of the free
surface is constant. However, when the surface is in motion, the edge condition depends
upon whether the channel wall is wetted or not and has to be determined as a part of the
solution to the free surface problem. In our study of capillary waves under gravity on a
viscous fluid in an inclined channel (Shih, 1973; shen and S8hih, 1974), we made the
assumption that the fluid velocity should be continuous at the line of contact. It follows
that the free surface elevation will remain zero if initially it is zero there. This
argument would seem to be plausible only for small amplitude waves. By a different
consideration the same edge condition was also used by Kopachevskii (1967).

In two recent papers by Benjamin and Scott (1979) and Benjamin (1981), the problem of
gravity-capillary wvaves with edge constraints on an inviscid fluid has been investigated
both experimentally and theoretically. They considered a straight horizontal channel of
uniform cross section, and filled the channel with water up to the brim so that the edge
condition of zero surface elevation can be experimentally realized. 1In the former paper,
the linear problem was studied. In the latter, variational principles were formulated for
the full nonlinear equations as a Hamiltonian system and for waves of psrmanent type.
However, as pointed out by Benjamin (1981), a rigorous treatment of the nonlinear problem

is beyond reach at present. In this paper, we shall use a different approach to study a
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more general problem, that is, the channel is allowed to have a slowly varying cross
section. The main purpose of our work is to derive an equation of the K-dV type, which may
be used as an approximate equation for the investigation of long capillary waves with edge
constraints in a channel.

Our approach is based upon the nonlinear ray method developed in Shen and Keller
(1973). The basic ideas may be explained as follows. The motion of a wave front is
assumed to be determined by a phase function. It is found that the phase function
satisfies the Hamilton-Jacobi equation in geometrical optics, the solutions of which
determine a family of bicharacteristics called rays. An equation of the K-dV type is then
derived along the rays for the wave amplitude. In a report by Zhong and Shen (1982), we
specialized the procedure in Shen and Keller (1973) to the case of an incompressible
inviscid fluid without surface tension, and an equation of the K-dV equation for a channel
of variable cross section was derived. The present work is an extension of the previous
result and a host of problems, such as fission of solitons (Johnson, 1973; Zhong and Shen,
1982), shelf generation behind a solitary wave (Knickbocker and Newell, 1980) and others,
may be studied similarly by means of the equations derived here. However, this report is
self-contained, there is minimum reference to the previous report. We also note that our
method is related to those developed in Kuzmak (1959) and Choquet-Bruhat (1969).

We formulate the problem in §2. In §3 we derive an equation of the K-dV type for a
general channel. 1In §4 the example of a symmetric rectangular channel with variable width

is considered to illustrate the method. Finally some discussions are given in §5.
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§2. FORMULATION OF THE PROBLEM

We consider the motion of an inviscid, incompressible fluid of constant density with
surface tension in a channel with a smooth convex boundary defined by h*(x*,y*,z*) =0,
where z* is positive upward (Pigure 1). The lines of contact are two curves of

intersection of h* = 0 with the plane 2z® = d*. The governing equations are

u;+v;,+w;.-o, (1)
n:. + utu;' + v'u;. + uﬂ“:. - .p;./pt ' (2)
Vie ¥ Upe * VOVE, * WAVR, = opl/0t (3)
Vee ¥ UL, VOWE, 4 WML, R R/t - g, (4)

subject to the boundary conditions: At

5 = n¥(x*,y*,tY) ,

(5)
Nge + U, +ne, - we =0,
P o= reIng, (1 ¢ med) Neepelt + M20) - LU RE
(6)
(1 n;z . n;z)-S/z '

at h*(x*,y*,s* = 4*) = 0,

nt = g¢ , (7)
at h*(x*,y*,z*) = 0,

uhe, + YBE, & W, = 0 . (8)

Here (u*,v*,w") is the velocity, t* is the time, g¢g* is the constant gravitational
acceleration, P* is the constant density, p* is the pressure, z* = n* ig the equation
of the free surface and T* {s the constant surfact tension coefficient. Within the
frawework of long wave approximation, we assume that the channel bottom varies slowly in
the longitudinal direction and the magnitude of the transverse velocities is much smaller
than that of the longitudinal velocity. Under these assumptions, we introduce the

nondimensional variables
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Figure 1.

A cross section of the channel.
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t = 872/ w/9) V2, tx,yi2) = (87 k0 gm0 my

n=M*H, h=h*/H, p = p*/(pgH) .
(w,vow) = (ue/am) V2, 8Y2ves ()2, 8V 200/ (a) V%) ,
T=1o/0g%), B2 a1, a=avu,

where L,H are reapectively the longitudinal and transverse length scales. In terms of

the unstarred variables, (1) to (8) become

u ¢ B(vy tw)=0, (9

u +uu + B(vuy + vu’) =P, ¢ (10)

\ + uvx + B(vuy + uuz) - -szy . (1)
v b 4Bl b W) = -8T(p ¢ 1), (12)

subject to the boundary conditions:

At z = n(x,y,t) ,
(13)
"t + unx + B(vny ~w) =0,
- -3 2 -3, 2
p = -T(8 nxx(1 + ny) + nyy(1 +8 nx)
(14)
-3 -3 2 2,-3/2
=28 “n_n 1+ +
x‘”‘nyl( 8 n ny) H
at hix,y,z,2 = 4d) = 0 ,
(18)
n=4;
at hix,y,2) = 0 ,
(16)

uhx + B(vhy + whz) =0 .
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§3. DERIVATION OF THE EQUATION OF THE K~dV TYPE
We introduce a phase function § = S(t,x) and let § = BS. Assume that u,v,w,p and
N also depend upon £ and possess an asymptotic expansion of the form
P tx,y,2,8) ~ 9 + 8'101 + 3'20‘ +oeee (17
where ¢° is given by
(uo,vo,wo) =0, p=-2z+ 4, no =4, (18)
Substitution of (17) in (9) to (16) will yield a sequence of equations and boundary

conditions. The equations for the first approximation are

k“‘IE + v1y tw, =0, (19)
-m1€+kp15-0 ' (20)
Py = Pyp =0 (21)
subject to the boundary conditions
m,e tw o= 0 (22)
Py =N, - m‘lyy at £ =4, -b.(x) <y« b,(x) , (23)
n, - 0 at z=4, y= -b1(x).b2(x) ' (2¢4)
\r‘hy + '1hz =0 at h=o0, (25)

where @ = -st' k=g, and y = ~by(x), y= bz(x) are lines of contact. From (21), we
see that Py = p,(t.x.E)- To solve (23), (24) for Ny, let
n, - v1(x,y)p1 . (26)

and v1 (x,y) satisfies

v‘--1/'r, -b1<y<bz,

vy, = 0, YY" -b"b

1 2 °

It is easily found that the sclution for \" is

vy = 1 = [coshuly - (l:>2

where u = (%) 1/2, and b = b1 + bz. We integrate (19) over a cross section D of the

channel and make use of (20), (22) and (25) to obtain

- b,)/Z)l/mnh(llh/Z) (27)
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p‘g ln(x)kz -
=b
1

\"(ch)le =0,

where &a(x) is the area of the cross section. Suppose Py ¥ 0. Then we have

w/k = g(a/b(1 = (2/ub)tanhub/2)1 /2 = Gix) , (28)
which is in the form of Hamilton-Jacobi equatin in geometrical optics, and can be solved by
the method of chancuzluucn. The characteristic equations are

at/40 » y, Aax/40 = WG, dk/40 = -kuG' ,

M/40 = 48/40 = 0 , 2
where U is a proportionality factor. The solutions of (29) determine a one-parameter
family of bicharacteristics, called rays. As seen from (29), both @ and § are constant
along a ray. let O = ¢t in (31) and fram dax/4t = G(x) we obtain by integration the

equation of a ray

x -1
J Nt -t .

where (to,xo) is the initial point of & ray. We may choose X5 = 0 and prescribe
8§= =t on x= 0. Then
8= -t)= -t ‘I: eten "' . (30)
It follows that
way, k=@, (31)
Needless to say, other choices of $ are aleo possible.
The equations for the second approxisation are

kuu * vzy * 0.0“ =0, (32)
-y ¢+ Im.u‘t + kpu tuLtP " 0, (33)
Pay * LT ] (34)
’ 92. - N‘; . (35)
subject to the boundary conditions
i

N
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-un + kun -W, - W zn +n =0,

b 3 11§ 2 1z 1 1t

P, - n2 = -'1‘(11"5g + nzyy) at z=4d, -b<yc« b2

n,=0 at z =4, y= -b1,b

2 2

v2hy+w2hz’ -u1hx at h=0.

A L A

(36)

(37)

(38)

(39)

By differentiating (34), (35) with respect to y and z respectively, adding, and making

use of (19) and (20), we obtain

2 .2
v pz k p156 .

(40)

Then we differentiate (22) and (25) with respect to § and make use of (34) and (35) to

obtain

Py ™ dnzv at z f da, -b1 <y« b2 ’

12114

h +h
b4

Py h,=0 at h=0.

2z

Py, = - O(tz.x.y,z)p155 + Az(t,x,E) .

(40) to (42) imply

v% =%x? in D,

’z - u2v1 at z = 4, -b1 <y« b2 ’

thy + ’zhz =0 at h=0.

(41)

(42)

(43)

(44)

(45)

(46)

The Neumann problem posed by (44) to (46) is solvable as a consequence of (28). If we

asgume U,,V,,¥,/PyePys tend to zero as &£ tends to infinity, it follows from (20), (34),

(35) and (43) that
- -1 - -
(“11"11") w (kp1l ’Yp1€' 03915) .

Finally, we shall obtain a solution of n in terms of Py and A,

2

(37), (38) and (43), n2 satisfies

n - (1/'r)r|2 - - “19155 + (1/T)¢(z = d)pﬁg - (1/'1'm2 .

2yy

nz-o at z-d' y--b1,b2n

(47)

Prom (26),

(48)

(49)
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We express n, as

'lz = Vz(’hY)P‘EE + “1A2
where 02 satisfies

Vagy = (V/EIV, =V 4 (/M = @),

vz =0 at y = -b1,b2 .

Now we are in a position to derive the equation of the K-av type.

it follows that

vzy + Wy ° -(k/w)(ksz + ku1u16 + U, + Py ) -

u
x x

(50)

(51)

(52)

From (32) and (33),

(53)

We integrate (53) over a cross section D, make use of the divergence theorem, (20), (28),

(26), (39), (43), (47) and (50), and obtain

2

+v
Y 152

b
+ h:)'Vzds + [ 2wy

-(k/w)p, [ h_(n
1 x

r -b

1

2P1gee

2 -1 -1
+ k'w p1v1p15 + 0 ozz(z = d)v1p1p15 + v1p1t]dy
3 -2
- éf (k/m)[k(-op1555 +hy) KW PPy
+ (k/w)p, + p, ldyaz - gf (kp /0) dydz

By rearranging the terms, the above equation reduces to
BoPye * PPy * MaPy ¥ PPy * BePoggg = 0 ¢
which is our main result, where

- -1
m, = 2a(G) 2 m, = 2a(6)”" ,
2
Y

1/2 1

-1 2. - -
m, = ~(G) { h (ho + h7) ds +al(e) ],

-3 -1 b2
m, = 3ka(G) " + w _{ 0z = v, gy,
1

b, -1
m, = -0 J v,dy - kG /] ¢an ,
-b, D

-9-
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(55)

PR S T




] f hx(h: + hi)-vzdl is the line integral over the boundary of h = 0 in each cross
o - r

section (Figure 1), and (hx'hy'hz) is in the outward normal direction. Along a ray we
- let 0=t and
h 4/40 = 3/3¢ + (dx/4t) 3/3t = /3t + G(x) 3/9¢t .

In terms of 0, (54) becomes
3
4 ByPyg + LI + 131)"p15 + .491555 =0. (56)
I We may also use x as a variable along a ray, then (56) assumes the form
b
J P + ®p, + l3;>11:1E + -4p15€5 =0. (57)
»
¥
x
8

=10~
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§4. A RECTANGULAR CHANMEL WITH VARIABLE WIDTH

We consider a sysmetric rectangular channel with constant depth and variable width.
Each cross section D of the channel is bounded by £ =0, z =1, y = tf(x), where
2(x) is a smooth function satisfying 0 < l.‘ < f(x) € ‘2 , and l‘.lz are two

constants. The equations for ¢, (44) to (46), now become
v2 = x? ia D,
9'-n’v' at g=1, -Lcy<t,
¢ =0 at y=-R,8, 0<s< 1,
‘4.0 at g =0, ~L<cy<t,
tat ¢ = ¢ + kx%/2. Then ¢ satisties
=0, in D,
0.--k200’\". at s=1, ~Lcy<t,

.’-0' at ,--‘.‘. 0(8(1.

-0, at =0, -8 <cy<t.,

¢

s
which may be solved by separation of variables, where by (27)
v‘ = 1 - coshyy/coshut , (58)
and Kk,8 are assumed to be givem by (31),
By symmetry, we may consider the problem in 0 € y € £ and prescribe the condition
oy-o at y=0, 0 <3< . It is easily found that
-
] k’s’/z + Z Aneolh nws/% cos nwy/& , (59)
n=0

A" ="V aecanhut/(nn (u? + (nv/2)2)sinh mm/2), n > 1,

wvhere Ay is arbitrary and we choose Ao = - u’/z + T. Next we proceed to find the

solution for \02. Prom (51), (52), (58) and (39), we have

-1t=

P N [ - - . PR " P S
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-
= coshuy/coshuf + uz Z Ancosh nv/L cos n¥y/Lk, =L <y <2,
n=1

2
“2yy u v2

v, = 0 at y = -l,i .
By symmetry again, we may solve v2 for the half interval 0 € y € £ and prescribe
yzy =0 at y= 0. We find that
vz = -4 tanh ut cosh py/{2u cosh ut] + y sinh py/[2u cosh ui)
S (60)

+ Z Bn((—i)ncOlh uy/cosh ut = cos n¥y/R) .
ns= 1

where
2 2 2
B =u Anco-h nw/L / (u° + (aw/2)7) .
The expression for ¢ and vz given by (59) and (60) enable us to evaluate the
coefficients in (54) for a channel of constant depth but variable width. To be definite,

we choose the positive sign for G. It is obtained from (55) that

m, = 4%(1 - (1/ut)tanh ¥t} ,

m, = 28[1 = (1/uf)tanh V2,

m, = (1/2)a l'/dx .

m, = 6kL(1 = (1/ut)tanh w32

-
o 3 e300 + (/002 2eann?ut canh na/t ,
n=1

n, = =(22%*/3) (1 - (1/ut)tanh u) 12

+ (@t/u?)(tanh?ut = 1) + (@/u’)cank ut
T 2

+ 7 @iu¥mmn? + (/0% 2eann ut
n=1

Here we keep kX and @ in n,y and m, since other choices of 8§ are also possible. We
also remark in passing that all termwise differentiations and integrations needed in the
derivation of my to m, can be justified without difficulty, and my is independent of

the arbitrary coefficient A, in ¢ Dbecause of (28).

-2-
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§5. DISCUSSION
We observe from the Hamilton-Jacobi equation (28) that the surface tension of the

liquid has the apparent effect of reducing the width and increasing the mean depth of the
channel. Therefore, the group velocity of a capillary wave is always greatr than that of a
surface wave without surface tension, and is an increasing function of the nondimensional
surface tension coefficient T. One solution for (28) is given in (30). On the other
hand, ve may prescribe 8 = x at t = 0. Then S is determined implicitly by

x
| teten'ag - ¢

S
In this case,

w = G(8), k = G(8)/G(x) .

The disadvantage of determining S implicitly may be compensated by the fact that the

initial condition for (54) at t = 0 can be directly expressed in terms of § = B-ts.

Certainly one can also solve (28) by pregscribing data on any simple smooth curve

G to - to(l), X, = xo(l), in the t,x-plane where we may identify S with s. Then
8 satisfies
x -1
/ (6(M]7"an = ¢ - ¢t8) .
xo(s)

It is shown that the rays do not intersert each other if G has no characteristic
direction.

We may derive the so-called Green's law (Lamb, 1932) for the change of wave amplitude
as follows. If we linearized the governing equations, and applied the ray method (Keller
(1958), we would obtain from (S6)

BiPyx * WPy = 0

along a ray. Therefore,

x
P, = (p,)ooxpt-,{ (n,/m, ) &) ,
0

wvhere (p‘)o is the initial value of Py and by (26)

-13=
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Ny =V 00y)(p,) jexpl- f (m,/m)0]) . (60)
0
We note that P, ,n‘ should be interpreted respectively as the wave amplitude of the first
order pressure and surface elevation. The exponential in (60) will be called the
amplification factor. As seen from (55), m, and m; 4o not depend upon the solution ¢
of the Neumann probles posed by (44) to (46), and can alwvays be determined for a given
channel. For a rectangular channel with variable width b(x) and depth d4(x), it is found

that

Ny =V (x,y) (P [B(1 = (1/ub)tanh ub/2)1"V2a™V4

We see that the amplification factor is always greater for a surface wave with surface
tension.

1f the channel has a uniform cross section, then h = (G ')x = 0 and from (55)
lz = 0, and all other coefficients are constant. Furthermore, the rays are straight
lines and given by G 'x - t = constant. We obtain from (S0) that

BgPrg * MyPiPyg * BePygeg " 0 ¢

from which expressions for progressive waves of permanent type can be found. Pinally if
T tends to sero, that is, u tends to infinity, (55) reduce to those obtained in Zhong
and Shen (1982) for waves without surface tension.
Acknowledgements. The author wishes to thank Professor R. K. Meyer for bringing his
attention to Professor T. B. Benjamin's work on gravity-capillary waves in a channel. He

also would like to thank Professor J. B. Keller for comments.
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